musical milliner

January 19, 2012

We Should Become Martians: Part I. ~ Guest Blogger Claude Plymate Returns!

  Claude Plymate is the Telescope Engineer/Chief Observer at  Big Bear Solar Observatory in California, and is the  former chief  wrangler of the McMath-Pierce Solar Telescope at Kitt Peak National Observatory Arizona for many years. He is a regular contributor to Musical Milliner.

It likely won’t come as any surprise to those of you who know me or have read some of my earlier essays that I am a strong advocate of sending humans to Mars. What might surprise you are my reasons which are more about societal needs than about scientific exploration. Our population has now passed the 7 billion mark.

There are indicators all around us that this planet cannot maintain the pressure we’re applying to its resources and resiliency. There is little reason for me to go into the details here; you are all well aware of the risks we are subjecting ourselves to. Global climate change, fresh water depletion, famine, nuclear proliferation, pandemics and war are just a sampling of the dangers we pose to ourselves. On top of our self-imposed hazards, the solar system is in general a menacing place to live.  Asteroid impacts have already wiped out the dominant species on Earth at least once before.  A nearby supernova could disrupt our ozone layer with catastrophic consequences. We are fortunate to have a strong magnetic field and atmosphere that protects us from the harsh radiation coming from solar flares but civilization has left our technology quite vulnerable to such eruptions. It doesn’t appear that a “super flare” will kill us outright but just imagine the disruption to society if the Internet, electric grid, GPS system, radio communications and even telephones suddenly and unexpectedly went ‘dark’– and not just for a few hours but possibly days, weeks or even months!

What I’m trying to point out is that there are many real threats to our civilization and even our existence as a species. Some are self-imposed, some are natural.

This leads us to the question of how to mitigate such threats to humanity.  Consider how you deal daily with risk management of other items you regard as valuable. For example, you wish to protect your documents and photos stored on your computer’s hard drive. What do you do? Of course, you backup your files onto a separate drive stored  in a separate location. (You do back up your files, don’t you?)  Applying this same rationale to society naturally leads to the conclusion that to survive long-term, humanity must expand beyond this one little planet.  Then, even if the unthinkable occurs, all that humanity has achieved won’t completely disappear from history.

The obvious first destination for a human outpost beyond Earth is Mars. Mars is the most Earthlike of the other planets within the solar system. It is close in astronomical terms and has an atmosphere. Mars is a place we can live. Plus, the lower surface gravity of Mars (about 1/4  that of Earth) makes getting on and off its surface much easier than here on the Earth.

Unfortunately, the atmosphere on Mars is very tenuous with a mean surface pressure ~ 600 Pa (0.087 psi), equivalent to an Earth atmospheric altitude of around 90,590 ft (27,612 m). On top of that, it’s a toxic mixture of mostly carbon dioxide. Anyone on the surface would have to wear a pressure suit (space suit). Even this exceedingly thin atmosphere could be used to pressurize suits & shelters. All that would be needed would be a compressor to pressurize the interiors. Simple inflatable structures could even be used for such things as storage, workshops and greenhouses. You still couldn’t breathe in the high CO2 environments but an oxygen mask would be all that’s required for people to work in otherwise shirtsleeve comfort. There are likely many plants that could thrive in these pressurized greenhouses. Obliviously, living quarters would need more oxygen to make a breathable atmosphere which is easily attainable
by liberating O2 from either CO2, water or even iron oxides (rust!) in the soil that gives the planet its red color.

Water means life. We need water to drink, water for crops and water to make oxygen. Recent Mars probes are making it clear that water (at least in the form of ice) is much more common on Mars than previously believed. What is required to harvest the water is energy; energy to drill wells or mine ice, energy to extract the O2. Possible sources for power include solar panels and/or nuclear generators and perhaps even geothermal. I suspect that the atmosphere is simply too thin to support wind power.

There are two primary arguments against going to Mars that people normally state; interplanetary spaceflight is beyond our technical ability and the cost would be far too great. I’d like to address these arguments one at a time.

Stay tuned for We Should Become Martians: Part II next week.




  1. Off to Mars!!
    In U.S. Culture, we have always used “the frontier” as a place to “blow off steam”, and relieve excess societal pressures. Without a current “frontier” you can see how we are turning into over-crowded Rats, and going cannibalistic.
    Also, “conquering” the “frontier” has been the economic driver of technological change.
    Onward to Mars! Just be careful of getting into real estate with Bob Zubrin.
    Better to have Nuclear power on Mars than on Earth. Talk about NIMBY!
    Just need to get that Townsend Brown Gravitor connected to the Farnsworth Fuser.

    Comment by james "creature" Musto — January 19, 2012 @ 7:37 pm

  2. Nuclear power, due to its tremendous energy density, is an obvious candidate for powering any space endeavor. The real problem with nukes is the public’s quite justified fears over launching nuclear materials from the Earth’s surface. The ideal solution would be to launch the reactor unfueled and then power it with in situ fissionable material. I don’t know how much uranium Mars has but I’d expect its distribution to be similar to here on Earth. What I would think most desirable would be to mine & enrich lunar uranium that could then be used to power a nuclear rocket for fast Earth-Mars transport. The enriched fuel could be launched into lunar orbit with a Gerard O’Neill style magnetic mass driver. Such a nuke powered rocket would make roundtrip travel practical!

    In my opinion, we shouldn’t however wait for such far-off technologies as they may never be realized. We should begin now pushing ahead with the technologies we currently have or very soon will have access to.

    There is more on the details of how we can get there in part II.

    Comment by Claude Plymate — January 20, 2012 @ 9:16 am

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at

%d bloggers like this: